Использование нетрадиционных возобновляемых источников энергии. Нетрадиционные возобновляемые источники энергии. История развития геотермальной энергетики

Понятие устойчивого развития включает в себя как обязательный компонент постепенный переход от энергетики, основанной на сжигании органического топлива (нефть, уголь, газ и др.), к нетрадиционной (альтернативной) энергетике, использующей возобновляемые экологически чистые источники энергии ¾ солнце, ветер, энергию биомассы, подземное тепло и др. (рис. 21.5).

Рис. 21.5. Классификация возобновляемых источников энергии
(Энергоактивные здания, 1988, с изм.)

В послании международной экологической организации Гринпис правительствам всех стран отмечается, что «правительства должны признать, что углеводородное топливо ¾ основная причина изменения климата и что единственной стабильной системой энергоснабжения, способной отвечать нашим энергетическим потребностям, может быть система, основанная на возобновляемых источниках энергии».

Основные преимущества возобновляемых источников энергии хорошо известны: практическая неисчерпаемость запасов (рис. 21.5) и относительная экологическая безвредность, в связи с отсутствием побочных эффектов, загрязняющих природную среду. Сдерживает их развитие недостаточный на сегодняшний день технический уровень индустриальных методов использования.

В жилищно-строительной сфере, как и во всех других видах человеческой деятельности, использование нетрадиционных возобновляемых источников энергии получило широкое развитие.

Энергия Солнца . В современной мировой практике энергоснабжения излучение Солнца ¾ возможно, главный нетрадиционный источник энергии. Появилась новая отрасль энергетики ¾ гелиоэнергетика , созданы специальные энергетические установки ¾ гелиосистемы.

«Ливень» солнечной энергии неисчерпаем. Лишь незначительная часть излучения Солнца (0,02%) попадает в биосферу Земли, но и этого количества энергии достаточно, чтобы в тысячи раз перекрыть общую мощность всех электростанций мира.

К недостаткам солнечной энергии относят дискретность (прерывистость) ее поступления на поверхность Земли (по часам суток, времени года, географическим поясам) и зависимость от метеорологических условий. Например, в России специалисты рекомендуют размещать гелиополигоны южнее 55° с. ш. В связи с этим многие зарубежные ученые работают над проблемой выноса гелиосистем на околоземную орбиту. Предполагается строительство в Европе 40 спутниковых солнечных электростанций , способных обеспечить около 20% потребности в электроэнергии. Однако не исключено, что солнечные электростанции могут причинить ущерб окружающей среде в процессе передачи энергии на Землю (А. И. Мелуа и др., 1988).

Существует два основных направления использования солнечной энергии: выработка электрической энергии и получение тепловой энергии (теплоснабжение). Применение солнечных электрогенераторов находится все еще в начальной стадии, зато использование солнечного теплоснабжения для обогрева жилых зданий занимает в мировой практике уже значительное место.


Так, в США в 1977 г. насчитывалось около 1000 солнечных домов, в 90-е гг. число их превысило 15 тыс. Солнечные установки для подогрева воды имеют 90% домов на Кипре и 70% в Израиле. Только за последние 15 лет в Японии построены сотни тысяч зданий с солнечным подогревом, что позволило резко уменьшить выбросы в атмосферу диоксида углерода и других парниковых газов.

Солнечная энергетика в России развита совершенно недостаточно, хотя половина ее территории находится в благоприятных для использования солнечной энергии условиях ¾ в год ее поступает не менее 100 кВт ч/м 2 , а в таких районах, как Дагестан, Бурятия, Приморье, Астраханская область и др. ¾ до 200 кВт ч/м 2 (Стребков, 1993).

Солнечная энергия очень удобна для энергоснабжения зданий. Как показали экспериментальные исследования, только за счет энергии солнечных лучей, падающих на ограждающие конструкции зданий, можно полностью решить энергетические проблемы, связанные с их обогревом, горячим водоснабжением и др.

Существует три вида гелиосистем, служащих для удовлетворения тепловых нужд здания: пассивные, активные и смешанные (Швецов, 1994).

В пассивных гелиосистемах само здание служит приемником и преобразователем солнечной энергии, а распределение тепла осуществляется за счет конвенции.

Основным элементом более дорогостоящей активной гелиосистемы является коллектор ¾ приемник солнечной энергии, где солнечный свет преобразуется в тепло. Гелиоколлектор представляет собой теплоизолированный ящик: видимый свет от солнца проходит сквозь прозрачное покрытие (стекло или пленку), попадает на зачерненную панель и нагревает ее. При специальной конструкции коллектора внутри его достигается очень высокая температура, позволяющая успешно осуществлять горячее водоснабжение.

Оценивая эффективность применения солнечного теплоснабжения в нашей стране, Н. Пинигин и А. Александров (1990) показали, что использование солнечных установок в режиме круглогодичного горячего водоснабжения зданий экономически целесообразно практически для всей южной части Российской Федерации.

В последние годы созданы установки с сезонным аккумулированием тепла, что позволяет даже в условиях Сибири сохранить до 30% топливных ресурсов и использовать их для обогрева небольших домов в зимний период. Необходимы дальнейшие поиски использования солнечной энергии не только в южных, но и в северных районах России, особенно учитывая, что в Норвегии и Финляндии такой опыт уже имеется.

Использование солнечной энергии в жилищно-строительной сфере не ограничивается только теплоснабжением жилых зданий. Так, АО «ПИ-2» разработало серию проектов гелиополигонов (стационарных и мобильных, сезонных и круглогодичного действия), в которых впервые в мире для термовлажностной обработки сборных железобетонных конструкций и изделий была использована солнечная энергия без промежуточных превращений (Великолепов, 1995) (рис. 21.6). После укладки гелиопокрытия (СВИТАП) железобетонное изделие превращается в аккумулятор тепла, после чего начинает действовать другой источник тепла ¾ экзотермия цемента.

Рис. 21.6. Общий вид и технологическая схема гелиополигона круглогодичного действия:
1 ¾ гелиокамеры; 2
¾ форма на колесах; 3 ¾ СВИТАП; 4 ¾ запирающий щит;
5
¾ инфракрасные излучатели; 6 ¾ механизм передвижения форм; 7 ¾ производственный корпус с БСЦ;
8 ¾ бетоновозная эстакада; 9 ¾ склад арматурных каркасов; 10 ¾ бетоноукладчик;
11 ¾ склад готовой продукции с зоной дозревания; 12 ¾ козловой кран

Строительство таких гелиополигонов позволяет: сократить объемы строительно-монтажных работ, повысить долговечность и качество изделия, снизить его стоимость, отказаться от котельной, теплотрасс, пропарочных камер, уменьшить нагрузку на окружающую среду и, главное, экономить условное топливо. По мнению авторов проекта, необходимо пересмотреть способы производства сборного железобетона и создать условия для широкого внедрения энергосберегающих технологий, использующих солнечную энергию.

В заключение приведем высказывание лауреата Нобелевской премии Жореса Алферова (2001) по поводу использования солнечной энергии: «Солнце ¾ это термоядерный реактор, который работает миллионы лет надежно и безопасно. И задача преобразования солнечной энергии в электрическую будет решена. Может быть, даже в нашем ХХI веке. Академик Иоффе мечтал о солнечной энергетике и ее широком применении, когда КПД солнечных преобразований равнялся 0,1%. Сегодня КПД солнечных преобразований на гетероструктурах достиг 35%. Да, это по-прежнему дороже, чем атомная энергетика. Но дороже не на порядок, а лишь в несколько раз. И хочется верить, что лет через пятнадцать - двадцать солнечная энергетика будет сравнима или даже обойдет другие виды».

Завораживающей сознание выглядит идея, предложенная японскими специалистами, о строительстве единой для всей планеты гигантской солнечной электростанции где-нибудь в Сахаре или пустынях Австралии. Для этой станции потребовалась бы площадь, эквивалентная квадрату со стороной 800 км. Но уже сейчас суммарная площадь солнечных отражателей, используемых в мировой практике, превышает 6 млрд м 2 (США ¾ 1,8 млрд м 2 , Япония ¾ 1,3 млрд м 2 и т. д.).

Энергия ветра. Направление энергетики, связанное с ветровой энергией, называют ветроэнергетикой , а здания, в которых энергия ветра преобразуется в электрическую, тепловую и другие виды энергии, ¾ ветроэнергоактивными .

Ветроэнергетика становится рентабельной при средних скоростях ветра от 3 до 10 м/с при повторяемости около 60-90% и, следовательно, может использоваться лишь в районах с постоянным ветром (Крайний Север, побережье Охотского моря, Камчатка, Курилы, Прикаспийская низменность и др.).

В ветроэнергоактивном здании энергия ветра преобразуется с помощью ветрового колеса, размещенного в здании. Основным рабочим органом является ротор, который вращает генератор.

По А. Н. Тетиору (1991), важной экологической проблемой является защита здания и жителей от механических колебаний, генерируемых ветроустановкой. Применение различных способов виброизоляции, включая размещение ветроэнергетических установок вне жилых зданий, приводит к удорожанию их строительства. Значительным недостатком ветроэлектростанции является также генерация ими инфразвукового шума.

И, тем не менее, ветроэнергетика имеет большое будущее. За последние 20 лет она прошла путь от небольших агрегатов до современной многомиллиардной отрасли, обеспечивающей большое количество энергосистем. В 2001 г. ветротурбины, мощность которых составляла 14 000 МВт, генерировали «чистую» электроэнергию в более чем 30 странах мира. Только в США работает 9000 ветровых электроустановок, в Дании ¾ 1500. По данным Европейской ассоциации ветровой энергии, к 2020 г. ветровые электростанции обеспечат 10% мировой потребности в электроэнергии.

Геотермальная энергия. На территории СНГ запасы еще одного нетрадиционного источника энергии ¾ геотермального тепла , оцениваются в десятки миллионов тонн условного топлива. Идея использования тепла Земли как альтернативного энергоресурса не нова. Еще в 20-е гг. ХХ в. К. Э. Циолковский и В. А. Обручев считали возможным использование геотермального тепла. К началу ХХI в. мощность энергии геотермальных систем в мире превысила 16 млн кВт ч, что достаточно для обогрева многих тысяч квартир. Исландия полностью отказалась от использования органического топлива, и широко использует геотермальные воды.

Наиболее экономически выгодный вариант использования геотермального тепла ¾ строительство ГЭС с использованием водяного пара (температурой 200-400 °С). К сожалению, месторождения термального пара в России, да и в мире, редки, поэтому основное применение находят геотермальные (теплоэнергетичекие) воды с температурой до 200 °С, выходящие на поверхность земли в виде источников. Достаточно упомянуть в связи с этим Паужетскую гидротермальную станцию, построенную в 1967 г. на Камчатке.

Перспективным направлением в энергосбережении специалисты считают извлечение тепловой энергии из водонасыщенных пластов, залегающих на глубинах 2-3 км и имеющих температуру 150-200 °С. На выбранной площадке бурятся вертикальные и наклонные нагнетательные скважины, по которым закачивается теплоноситель, который прогревается горячими породами, а затем откачивается. Подобная теплоэнергетическая система называется циркуляционной и ее применение вполне целесообразно во многих районах СНГ (Северный Кавказ, Крым, Армения, Закарпатье и др.). Первая в России термоциркуляционная система действовала в г. Грозном, где вода после использования в теплицах нагнеталась на глубину 1 км, там она вновь нагревалась.

Энергия биомассы . Биомасса ¾ это выраженное в единицах массы количество живого вещества организмов, приходящееся на единицу площади или объема. В процессе переработки она преобразуется в органические отходы и биогаз.

В настоящее время биомасса широко используется в качестве топлива, что является результатом постоянных усилий ученых и специалистов по созданию экологически чистой энергии и предотвращению выбросов загрязняющих веществ в атмосферу.

В энергетических целях биомассу либо сжигают, используя теплоту сгорания (в этом случае продукты пиролиза могут загрязнять атмосферу), либо перерабатывают путем анаэробного сбраживания с целью получения биогаза (рис. 21.7). Биогаз, состоящий на 60-70% из метана и на 20-40% из углекислого газа, получают в специальных установках, основной частью которых является реактор (метантенк), т. е. бродильная камера, в которую загружают биомассу.

Рис. 21.7. Принципиальная схема переработки ТБО методом
анаэробного компостирования для получения биогаза:
1 ¾ приемный бункер; 2 ¾ мостовой грейферный кран; 3 ¾ дробилка; 4 ¾ магнитный сепаратор;
5 ¾ насос-смеситель; 6 ¾ метантенк; 7 ¾ шнековый пресс; 8 ¾ рыхлитель; 9 ¾ емкость для сбора
отжима; 10 ¾ цилиндрический грохот; 11 ¾ упаковочная машина; 12 ¾ крупный отсев;
13 ¾ склад удобрений; 14 ¾ газголдер; 15 ¾ компрессор; 16 ¾ уравнительная касера; I ¾ направление
движения отходов; II ¾ направление движения биогаза

Материалом для переработки на биогазовых установках служат твердые бытовые отходы, навоз, отходы деревообработки (кора, опилки, стружки), осадки биологических очистных устройств и др.

С экологической точки зрения укажем на некоторые отличительные особенности использования этого энергетического направления:

1) биотехнологическая трансформация биомассы в энергию считается абсолютно безвредной;

2) в отличие от традиционных источников энергии данный метод не загрязняет окружающую среду;

3) вырабатывается не только энергия, но и одновременно природная среда очищается (освобождается) от продуктов жизнедеятельности и других отходов.

После очищения от углекислого газа и сероводорода биогаз сжигают и используют в стандартных водонагревателях, газовых плитах, горелках и других приборах.

В строительной сфере биогаз, как показывает мировой опыт, широко используется как источник экологически чистой энергии при производстве многих строительных материалов: гипса, стекла, керамзита и др. Доказано также, что при сухом способе производства цемента экологически и экономически выгоднее во вращающихся обжиговых печах использовать не традиционные источники энергии, а биогаз.

К нетрадиционным возобновляемым источникам энергии относят также энергию приливов, энергию ветровых волн, тепловые насосы, энергию температурных колебаний различных слоев морской воды и т. д.

Перспективным методом использования нетрадиционных источников энергии считается объединение ряда зданий в единую энергосистему в виде гелио- и ветрогелиокомплексов, а также ветроэнергоактивных комплексов, дополненных тепловыми насосами для трех сред (Селиванов, 1993). Эксплуатация подобных жилищно-энергетических комплексов позволит не только экономить невозобновляемые источники энергии, но и исключить или свести к минимуму вредное воздействие энергетики на окружающую среду.

по дисциплине:

"Основы энергосбережения"

Тема: "Возможности использования нетрадиционных и возобновляемых источников энергии"

Введение

Виды нетрадиционных возобновляемых источников энергии и технологии их освоения

Использование возобновляемых источников энергии

Возобновляемые источники энергии в России до 2010 года

Роль нетрадиционных и возобновляемых источников энергии при реформировании электроэнергетического комплекса Свердловской области

Заключение

Один из основных аргументов против использования НВИЭ - их "дороговизна". Однако приведенные в таблице 1 данные по средней стоимости электроэнергии, полученной от различных источников энергии на электростанциях стран ЕС (в центах за кВт. ч), свидетельствуют об обратном: одной из самых дорогих оказывается энергия, полученная на АЭС. Все остальные источники (за исключением фотоэлектрических станций) значительно дешевле.

Таблица 1.

Согласно официальным оценкам (Минтопэнерго), экономический потенциал ВИЭ в России представлен в таблице 2.


Таблица 2.

Однако энергия большинства НВИЭ обладает малой плотностью потоков энергии (рассеянностью или низким удельным потенциалом) и нерегулярностью поступления, зависящей от климатических условий, суточных и сезонных циклов. Поэтому для эффективного использования НВИЭ, собственно ветра, солнца, морских волн и др., необходимо решить ряд инженерных задач по созданию экономичных и надежных устройств и систем, воспринимающих, концентрирующих и преобразующих эти виды источников энергии в приемлемую для потребителя тепловую, механическую и электрическую энергию. Для обеспечения бесперебойного энергоснабжения за счет НВИЭ, особенно автономных потребителей, система должна быть укомплектована аккумуляторами и преобразователями. Особенно перспективны гибридные системы, использующие одновременно два или несколько видов НВИЭ, например солнце и ветер, взаимно дополняющих друг друга, в сочетании с аккумулятором и резервным двигателем внутреннего сгорания в качестве привода электрогенератора.

При существующем соотношении цен на органическое топливо и оборудование уже сегодня имеются зоны экономически эффективного применения НВИЭ и в России.

По электроэнергии - это районы автономного электроснабжения, особенно использующие привозное топливо, а также территории дефицитных энергосистем.

По теплу - это практически вся территория России, особенно районы с привозным топливом, экологически напряженные населенные пункты и города, а также места массового отдыха населения.

Ветровая энергетика.

Использование энергии ветра сегодня чрезвычайно динамично развивающаяся отрасль мировой энергетики. Если суммарная установленная мощность ветровых энергоустановок (ВЭУ) в мире в 2000 году составляла 17,8 ГВт, то в 2002 году она достигла уже 31,1 ГВт. По данным 2002 г. странами-лидерами по установленной мощности (ГВт) ВЭУ являлись:

Германия - 12;

Испания - 4,8;

Дания - 2,9;

Индия - 1,7.

Тенденцией последних десятилетий является непрерывный рост единичной мощности сетевых ВЭУ. Еще 10 лет назад типичной ВЭУ в составе ветровых ферм была установка мощностью 300-500 кВт. В 2000-2002 годах серийной стала ВЭУ мощностью 1÷1,2 МВт. Некоторые фирмы начали производить еще более крупные установки - до 4,5 МВт в основном для применения на шельфе, где наиболее благоприятны характеристики ветра. Это приводит к снижению стоимости установленного киловатта, которая сегодня находится на уровне 1000 долл. /кВт, и стоимости вырабатываемой электроэнергии.

При благоприятных характеристиках ветра стоимость электроэнергии, вырабатываемой крупной ветровой фермой, приближается к стоимости на топливных электростанциях. Все крупные ВЭУ работают совместно с сетью, и их суммарная мощность не должна превышать 15-20% от емкости сети.

В России до недавнего времени развитию ветроэнергетики не уделялось должного внимания. Разрабатывавшиеся в конце прошлого века ВЭУ мощностью в 250 кВт не были доведены до необходимых требований по надежности и эффективности. Аналогичной оказалась судьба разработки ОКБ "Радуга" ВЭУ мощностью в 1 МВт. Поэтому практически все крупные ВЭУ, действующие сегодня в России, укомплектованы импортными агрегатами (Табл.3).

Таблица 3.

В отличие от производства крупных ВЭУ, в России имеется довольна развитая производственная база по выпуску автономных ветроустановок малой мощности: от 0,04 до 16 кВт, в том числе ветро-дизельные агрегаты. Около 10 изготовителей готовы выпускать такие ВЭУ, а некоторые из них (ЦНИИ "Электроприбор" г. Санкт-Петербург) поставляют свои изделия заграницу. В России потенциальный рынок для таких установок велик, однако, расширение выпуска не происходит из-за малого платежеспособного спроса. Для более широких поставок заграницу, прежде всего в развивающиеся страны, необходима сертификация установок по международным стандартам и наладка гарантийного и сервисного обслуживания.

К малым ГЭС условно относят гидроэнергетические агрегаты мощностью от 100 кВт до 10 МВт. Меньшие агрегаты относятся к категории микро-ГЭС. Суммарная мощность малых ГЭС в мире сегодня превышает 70 ГВт.

Малая гидроэнергетика за последние десятилетия заняла устойчивое положение в электроэнергетике многих стран мира. В ряде развитых стран установленная мощность малых ГЭС превышает 1 млн. кВт (США, Канада, Швеция, Испания, Франция, Италия). Они используются как местные экологически чистые источники энергии, работа которых приводит к экономии традиционных топлив, уменьшая эмиссию диоксида углерода. Лидирующая роль в развитии малой гидроэнергетики принадлежит КНР, где суммарная установленная мощность малых ГЭС превышает 13 млн. кВт. В развивающихся странах создание малых ГЭС как автономных источников электроэнергии в сельской местности имеет огромное социальное значение. При сравнительно низкой стоимости установленного киловатта и коротком инвестиционном цикле малые ГЭС позволяют дать электроэнергию удаленным от сетей поселениям.

В России энергетический потенциал малых рек очень велик. Число малых рек превышает 2,5 млн., их суммарный сток превышает 1000 км3 в год. По оценкам специалистов сегодняшними доступными средствами на малых ГЭС в России можно производить около 500 млрд. кВтч электроэнергии в год.

В середине прошлого века в России работало большое количество малых ГЭС, однако, впоследствии предпочтение было отдано крупному гидроэнергостроительству, и малые ГЭС постепенно выводились из эксплуатации. Сегодня интерес к малым ГЭС возобновился. Несмотря на то, что их экономические характеристики уступают крупным ГЭС, в их пользу работают следующие аргументы. Малая ГЭС может быть сооружена даже при нынешнем дефиците капиталовложений за счет средств частного сектора экономики, фермерских хозяйств и небольших предприятий. Малая ГЭС, как правило, не требует сложных гидротехнических сооружений, в частности, больших водохранилищ, которые на равнинных реках приводят к большим площадям затоплений. Сегодняшние разработки малых ГЭС характеризуются полной автоматизацией, высокой надежностью и полным ресурсом не менее 40 лет. Малые ГЭС позволяют лучше использовать солнечную и ветровую энергию, так как водохранилища ГЭС способны компенсировать их непостоянство.

В 90-е годы в России проблема производства оборудования для малых и микро-ГЭС в основном была решена. Особенно привлекательно создание малых ГЭС на базе ранее существовавших, где сохранились гидротехнические сооружения. Сегодня их можно реконструировать и технически перевооружить. Целесообразно использовать в энергетических целях существующие малые водохранилища, которых в России более 1000.

В стране имеется ряд предприятий, производящих и продающих гидроэнергетическое оборудование, отвечающее самым современным требованиям и не уступающее лучшим мировым образцам. С использованием этого оборудования малые ГЭС могут создаваться как полностью автономные, так и работать на сеть. Последнее требует разработки законодательства, регламентирующего взаимоотношения между индивидуальными производителями электроэнергии и сетью.

Наиболее просто использовать солнечную энергию для получения тепла для горячего водоснабжения. Солнечные водонагревательные установки (СВУ) широко распространены в странах с жарким климатом. Например, в Израиле закон требует, чтобы каждый дом был оснащен СВУ. В США СВУ повсеместно используются для подогрева воды в бассейнах. Вклад СВУ в энергетический баланс США эквивалентен примерно 2 млн. тут в год. Основным элементом СВУ является плоский солнечный коллектор, воспринимающий солнечную радиацию и преобразующий ее в полезное тепло. Поэтому обычно масштаб использования СВУ оценивают площадью установленных солнечных коллекторов. Суммарная площадь коллекторов, установленных сегодня в мире оценивается в 50-60 млн м 2 , что обеспечивает получение тепловой энергии, эквивалентной 5-7 млн тут в год. В Европейских странах к концу 2000 г. действовало 11,7 млн м 2 коллекторов.

В России СВУ на сегодня не нашли сколько-нибудь значительного распространения, что с одной стороны связано с относительно низкой стоимостью традиционных топлив, а с другой - бытующим мнением о недостаточной инсоляции в большинстве регионов России.

Вместе с тем в последние годы для всей территории России проведено тщательное исследование прихода солнечной энергии на поверхности, тем или иным образом ориентированные в пространстве, и показано, что практически для всех регионов страны, включая высокие широты, применение СВУ в течение 3-6 месяцев в году экономически оправдано.

В эти же годы рядом промышленных предприятий разработаны новые типы солнечных коллекторов, применение которых в СВУ вместо импортных, делает эти установки экономически более привлекательными. В связи с этим интерес к использованию СВУ в стране, особенно в южных регионах, возрос (Ростовская область, Ставропольский и Краснодарский края, Дагестан, Калмыкия, Бурятия). Хотя в летнее время даже в Сибири достаточно солнца, чтобы использовать СВУ. Представляет также интерес использование солнечных коллекторов в сочетании с тепловыми насосами (ТН) в том числе для отопления.

Для преобразования солнечной энергии в электроэнергию могут быть использованы как термодинамические методы, так и прямое преобразование с помощью фотоэлектрических преобразователей (ФЭП).

Сегодня в США работают 7 электростанций общей мощностью 354 МВт (э), использующие параболоцилиндрические концентраторы солнечной радиации и термодинамический метод преобразования. Известны проекты сооружения подобных СЭС в ряде стран так называемого солнечного пояса (Мексика, Египет и др.). Для России, с учетом характеристик солнечной радиации, подобные СЭС сегодня не представляют сколько-нибудь значительного интереса.

Фотоэлектрические преобразователи, напротив, находят все большее применение в самых разных регионах. В отличие от СЭС с концентраторами, ФЭП используют не только прямое, но и рассеянное излучение и не требуют дорогостоящих устройств для слежения за солнцем.

Рынок ФЭП развивается весьма динамично. Суммарная мощность установленных в мире ФЭП в 2002 году, превысила 500 МВт. Это обусловлено принятием в ряде стран национальных программ, предусматривающих широкое внедрение ФЭП ("100 тысяч солнечных крыш" в Германии, "100 тысяч солнечных крыш" в Японии, "1 млн. солнечных крыш" в США). Быстрыми темпами растет и производство ФЭП, достигшее 1 ГВт в год. Япония и Германия прогнозируют в ближайшие годы выход на годовые объемы производства до 500 МВт каждая. Массовое производство ФЭП ведет к их удешевлению. Сегодня модули ФЭП на мировом рынке стоят около 4 долл. за пиковый ватт, что при удовлетворительной инсоляции приводит к стоимости электроэнергии в 15-20 цент/кВтч. Особенно велик рынок ФЭП в развивающихся странах. Установки сравнительно небольшой мощности в единицы кВт представляют сегодня практически единственную возможность приобщить сельское население этих стран к современной цивилизации.

Сегодня на мировом рынке присутствуют тысячи фирм, создающих различные установки с ФЭП, но только десятки фирм, в том числе в России умеют делать солнечные элементы. Начиная с середины 90х годов, в России инициированы работы по совершенствованию ФЭП и развертывание их опытно-промышленного производства. Была разработана технология изготовления ФЭП и внедрена в производство на фирме "Солнечный Ветер" (г. Краснодар) и ОКБ "Красное знамя" (г. Рязань). Это позволило выйти на мировой рынок и увеличить поставки ФЭП за рубеж. Так, например, фирма "Солнечный Ветер" поставляет свою продукцию в более чем 10 стран. За 1996-2001гг объем продаж увеличился в десять раз (с 60 до 600 кВт/год), а в 2002 году превысил 1 МВт.

Однако, несмотря на положительные тенденции мирового рынка, высокая стоимость, электроэнергии от ФЭП сдерживает их более широкое применение. Эта высокая стоимость обусловлена как дороговизной основного материала (как правило, кремния высокой чистоты), так и дороговизной технологического процесса. Поэтому в мире и в России ведутся интенсивные исследования и разработки, направленные на удешевление ФЭП. Одним из перспективных направлений является создание высокоэффективных ФЭП с концентраторами солнечного излучения. Наиболее интенсивно исследования в этой области проводятся в США и России. КПД разработанных в США солнечных элементов (СЭ) на основе монокристаллического кремния достигает 20-25% при концентрации в 10-100 солнц и рабочей температуре 25оС. При большей концентрации эти СЭ требуют принудительного охлаждения, ибо их кпд существенно снижается с ростом температуры (на 1/3 при повышении температуры на 100 о С). Для работы при концентрации в 300-1000 солнц более перспективны СЭ на основе системы арсенид галлия - арсенид алюминия, впервые разработанной в ФТИ им. А.Ф. Иоффе. Значения КПД каскадных СЭ на основе GaAs, достигнутые в США и России (ФТИ им. А.Ф. Иоффе), составляют около 30% при концентрации в 500-1000 солнц и при реальных рабочих температурах 60-80 о С. Поэтому, несмотря на более высокую стоимость арсенида галлия, цены на энергоустановки с концентрацией по оценкам окажутся приблизительно в 2 раза ниже плоских кремниевых.

Вклад биомассы в мировой энергетический баланс составляет около 12%, хотя значительная доля биомассы, используемой для энергетических нужд, не является коммерческим продуктом и, как результат, не учитывается официальной статистикой. В странах Европейского Союза, в среднем, вклад биомассы в энергетический баланс составляет около 3%, но с широкими вариациями: в Австрии - 12%, в Швеции - 18%, в Финляндии - 23%.

Первичной биомассой являются растения, произрастающие на суше и в воде. Биомасса образуется в результате фотосинтеза, за счет которого солнечная энергия аккумулируется в растущей массе растений. Энергетический кпд собственно фотосинтеза составляет около 5%. В зависимости от рода растений и климатической зоны произрастания это приводит к различной продуктивности в расчете на единицу площади, занятой растениями. Для северных зрелых, медленно растущих лесов продуктивность составляет 1 т прироста древесины в год на 1 га. Для сравнения урожай кукурузы (вся зеленая масса) в штате Айова, США в 1999 г. составил около 50 т/га.

Для энергетических целей первичная биомасса используется в основном как топливо, замещающее традиционное ископаемое топливо. Причем речь, как правило, идет об отходах лесной и деревоперерабатывающей промышленности, а также об отходах полеводства (солома, сено). Теплотворность сухой древесины достаточно высока, составляя в среднем 20 ГДж/т. Несколько ниже теплотворность соломы, например, для пшеничной соломы она составляет около 17,4 ГДж/т. В то же время большое значение имеет удельный объем топлива, который определяет размеры соответствующего оборудования и технологию сжигания. В этом отношении древесина значительно уступает, например, углю. Для угля удельный объем составляет около 30 дм3/ГДж, тогда как для щепы, в зависимости от породы дерева, этот показатель лежит в пределах 250 - 350 дм3/ГДж; для соломы удельный объем еще больше, достигая 1 м3/ГДж. Поэтому сжигание биомассы требует либо ее предварительной подготовки, либо специальных топочных устройств. В частности, в ряде стран распространение получил способ уплотнения древесных отходов с превращением их в брикеты или, так называемые, пелетки. Оба способа позволяют получить топливо с удельным объемом около 50 дм3/ГДж, что вполне приемлемо для обычного слоевого сжигания. Например, в США годовое производство пелеток составляет около 0,7 млн. т, а их рыночная цена - около 6 долл. /ГДж при теплотворности около 17 ГДж/т.

В России использование отходов лесной, деревообрабатывающей и целлюлозно-бумажной промышленности для коммерческого производства электроэнергии и тепла пока достаточно ограничено. По данным Госкомстата в 2001 г. в стране имелось 27 малых ТЭЦ с общей установленной мощностью 1,4 ГВт, использовавших биомассу совместно с традиционными топливами (мазут, уголь, газ). При этом собственно на биомассе выработано 2,2 млрд. кВтч электроэнергии и 9,7 млн. Гкал тепла из общей выработки 5,5 млрд. кВтч и 24 млн. Гкал (т.е. около 40% от общей выработки).

Наряду с первичной растительной биомассой значительный энергетический потенциал содержится в отходах животноводства, твердых бытовых отходах и отходах различных отраслей промышленности. Использование этого потенциала возможно термохимическими или биохимическими методами. В первом случае речь идет в основном о твердых бытовых отходах, которые либо сжигаются, либо газифицируются на мусороперерабатывающих фабриках. Во втором случае сырьем является навоз или жидкие бытовые стоки, которые перерабатываются в биогаз.

В России ежегодно образуется около 60 млн. т твердых бытовых отходов (ТБО); количество отходов животноводства и птицеводства составляет около 130 млн. т/год, а осадков сточных вод 10 млн. т/год. Энергетический потенциал этих отходов составляет 190 млн. т у. т. Этот потенциал используется пока совершенно недостаточно. Имеются единичные опытные установки по переработке ТБО, эксплуатационные характеристики которых нельзя признать удовлетворительными для широкого промышленного использования. В этом направлении предстоит еще большая работа.

Серьезные успехи были достигнуты в области переработки жидких городских стоков. Уже с 50-х годов прошлого века на Курьяновской и Люберецкой станциях г. Москвы производилась очистка городских стоков и работали мощные биогазогенераторы - метантенки. Этот радикальный метод переработки активного ила и осадков сточных вод был затем реализован на станциях очистки Новосибирска, Сочи и других городов России.

В основе биохимической переработки отходов животноводства и птицеводства лежит анаэробное сбраживание. В результате этого процесса органическая масса отходов определенными штаммами бактерий превращается в биогаз. Обычный состав биогаза: до 70% метана и 30% диоксида углерода.

В настоящее время в России разработкой, созданием, производством опытных серий оборудования, установок в целом, реализующих высокорентабельные биогазовые технологии, занимается ЗАО Центр "ЭкоРос". Этот Центр разработал и выпускает опытными сериями индивидуальные биогазовые установки ИБГУ-1 для хозяйств, имеющих до 5-6 голов крупного рогатого скота. За 10 лет Центр произвел и реализовал 86 комплектов ИБГУ-1: из них - 79 в России, 4 - в Казахстане, 3 - в Белоруссии. С 1997 года по документации ЗАО Центр "ЭкоРос" освоено производство таких установок в Китае в г. Ухань на совместном китайско-российском предприятии.

Под геотермальной энергией понимают физическое тепло глубинных слоев земли, имеющих температуру, превышающую температуру воздуха на поверхности. Носителями этой энергии могут быть как жидкие флюиды (вода и/или пароводяная смесь), так и сухие горные породы, расположенные на соответствующей глубине. Из недр Земли на ее поверхность постоянно поступает тепловой поток, интенсивность которого в среднем по земной поверхности составляет около 0,03 Вт/м 2 . Под воздействием этого потока, в зависимости от свойств горных пород, возникает вертикальный градиент температуры - так называемая геотермальная ступень. В большинстве мест она составляет не более 2-3К/100м. Однако в местах молодого вулканизма, вблизи разломов земной коры геотермальная ступень повышается в несколько раз и уже на глубинах в несколько сот метров, а иногда нескольких километров, находятся либо сухие горные породы, нагретые до 100 о С и более, либо запасы воды или пароводяной смеси с такими температурами.

Принято считать, что если температура в геотермальном месторождении превышает 100оС, оно пригодно для создания геотермальной электростанции (ГеоЭС). При более низкой температуре геотермальный флюид целесообразно использовать для теплоснабжения. Если температура флюида для непосредственного теплоиспользования слишком низка, ее можно поднять, применяя тепловые насосы (ТН).

В настоящее время в мире суммарная мощность действующих ГеоЭС составляет около 10 ГВт (э). Суммарная мощность существующих геотермальных систем теплоснабжения оценивается в 17 ГВт (т).

Запасы геотермальной энергии в России чрезвычайно велики, по оценкам они в10-15 раз превышают запасы органического топлива в стране. Практически на всей территории страны есть запасы геотермального тепла с температурами в диапазоне от 30 до 200оС. Сегодня на территории России пробурено около 4000 скважин на глубину до 5000 м, которые позволяют перейти к широкомасштабному внедрению самых современных технологий для локального теплоснабжения на всей территории нашей страны. С учетом того, что скважины уже существуют, энергия, получаемая из них, в большинстве случаев окажется экономически выгодной.

До недавнего времени масштаб использования геотермальной энергии в стране был весьма скромным. В последнее десятилетие благодаря инициативе и работам АО "Геотерм" и АО "Наука" совместно с Калужским турбинным заводом был сделан существенный скачок в использовании геотермальной энергии на Камчатке и Курильских островах. Построена Верхнемутновская ГеоЭС мощностью 12 МВт. В 2002 г. пущен в эксплуатацию первый блок Мутновской ГеоЭС мощностью 50 МВт. На Курильских островах сооружены геотермальные станции теплоснабжения.

Особенно велики и практически повсеместно распространены запасы термальных вод со сравнительно невысокой температурой, недостаточной для непосредственного теплоиспользования. Интерес представляет и использование тепла поверхностных слоев грунта, температура которых на глубине в несколько десятков метров круглый год практически постоянна и равна среднегодовой температуре воздуха в этом месте. Это означает, что зимой грунт может служить низкопотенциальным источником тепла для отопления с помощью тепловых насосов.

Открытие излучения урана впоследствии стало ключом к энергетическим кладовым природы. Главным, сразу же заинтересовавшим исследователей, был вопрос: откуда берется энергия лучей, испускаемых ураном, и почему уран всегда чуточку теплее окружающей среды?

Эрнест Резерфорд и Фредерик Содди. пришли их к революционному по тем временам выводу: атомы некоторых элементов подвержены распаду, сопровождающемуся излучением энергии в количествах, огромных по сравнению с энергией, освобождающейся при обычных молекулярных видоизменениях.

Невиданными темпами развивается сегодня атомная энергетика. За тридцать лет общая мощность ядерных энергоблоков выросла с 5 тысяч до 23 миллионов киловатт!

В принципе энергетический ядерный реактор устроен довольно просто - в нем, так же как и в обычном котле, вода превращается в пар. Для этого используют энергию, выделяющуюся при цепной реакции распада атомов урана или другого ядерного топлива. На атомной электростанции нет громадного парового котла, состоящего из тысяч километров стальных трубок, по которым при огромном давлении циркулирует вода, превращаясь в пар. Эту махину заменил относительно небольшой ядерный реактор.

Самый распространенный в настоящее время тип реактора водографитовый.

Еще одна распространенная конструкция реакторов - так называемые водо-водяные. В них вода не только отбирает тепло от твэлов, но и служит замедлителем нейтронов вместо графита. Конструкторы довели мощность таких реакторов до миллиона киловатт. Могучие энергетические агрегаты установлены на Запорожской, Балаковской и других атомных электростанциях. Вскоре реакторы такой конструкции, видимо, догонят по мощности и рекордсмена - полуторамиллионик с Игналинской АЭС.

Но все-таки будущее ядерной энергетики, по-видимому, останется за третьим типом реакторов, принцип работы и конструкция которых предложены учеными, - реакторами на быстрых нейтронах. Их называют еще реакторами-размножителями. Обычные реакторы используют замедленные нейтроны, которые вызывают цепную реакцию в довольно редком изотопе - уране-235, которого в природном уране всего около одного процента. Именно поэтому приходится строить огромные заводы, на которых буквально просеивают атомы урана, выбирая из них атомы лишь одного сорта урана-235. Остальной уран в обычных реакторах использоваться не может. Возникает вопрос: а хватит ли этого редкого изотопа урана на сколько-нибудь продолжительное время или же человечество вновь столкнется с проблемой нехватки энергетических ресурсов?

Более тридцати лет назад эта проблема была поставлена перед коллективом лаборатории Физико-энергетического института. Она была решена. Руководителем лаборатории Александром Ильичом Лейпунским была предложена конструкция реактора на быстрых нейтронах. В 1955 году была построена первая такая установка.

Преимущества реакторов на быстрых нейтронах очевидны. В них для получения энергии можно использовать все запасы природных урана и тория, а они огромны - только в Мировом океане растворено более четырех миллиардов тонн урана.

Но все 400 атомных электростанции, работающих сейчас на планете, не могут создать угрозу, хотя бы сравнимую с угрозой, исходящей от 50 тысяч боеголовок.

Нет сомнения в том, что атомная энергетика заняла прочное место в энергетическом балансе человечества. Она, безусловно, будет развиваться и впредь, без отказано поставляя столь необходимую людям энергию. Однако понадобятся дополнительные меры по обеспечению надежности атомных электростанций, их безаварийной работы, а ученые и инженеры сумеют найти необходимые решения.

В 2000-2001 гг. в Минэнерго России была разработана подпрограмма "Энергоэффективность топливно-энергетического комплекса" как часть Федеральной целевой программы "Энергоэффективная экономика", рассчитанной на 2000-2002 годы и на перспективу до 2010 года.

Основными целями раздела подпрограммы "Энергообеспечение регионов", являются:

Улучшение социальных условий жизни населения, проживающего в удаленных и труднодоступных районах с автономным энергоснабжением, при сокращении издержек на доставку топлива в эти районы и увеличении надежности энергоснабжения.

Обеспечение гарантированного минимума энергоснабжения населения и производства в зонах централизованного энергоснабжения (главным образом в дефицитных энергосистемах) во время аварийных и ограничительных отключений, особенно в сельской местности.

Улучшение экологических условий жизни населения, проживающего в городах и населенных пунктах со сложной экологической обстановкой, особенно в местах массового отдыха населения, за счет снижения вредных выбросов от традиционных энергоустановок путем частичной их замены установками нетрадиционной энергетики.

В соответствии с указанными целями были определены мероприятия:

Создание энергетических комплексов с применением оборудования возобновляемой энергетики в 2002-2010 гг. с государственной поддержкой в объеме 2077 млн. руб.

Развитие производственной базы оборудования нетрадиционной энергетики в 2002-2010 гг. с государственной поддержкой в объеме 218 млн. руб.

Научно-исследовательские и опытно-конструкторские работы в области нетрадиционной энергетики на 2002 - 2010 гг. с государственной поддержкой в объеме 46 млн. руб.

Планируемый прирост объема вырабатываемой электрической и тепловой энергии за счет возобновляемых источников в России приведен в табл.4.

Таблица 4.

Снижение вредных выбросов от объектов энергетики, использующих органическое топливо, за 2002-2010 гг. составит 140 тыс. тонн, и сокращение эмиссии СО 2 - более 7700 тыс. тонн. По Программе общие бюджетные затраты на развитие возобновляемой энергетики России в 2002-2010 годах составят 2, 3 млрд. рублей, а суммарная бюджетная эффективность, которая состоит из налоговых поступлений и сокращения затрат на "северный завоз", оценивается в 12, 6 млрд. рублей.

Планируемая общая установленная мощность микро и малых ГЭС составляет 369, 38 МВт при суммарной выработке электроэнергии в объеме 2032, 6 млн кВт*ч. Малая гидроэнергетика занимает ведущее место по объемам освоения среди возобновляемых источников энергии.

Программой запланировано освоение суммарной установленной мощности ветроэнергетических установок в объеме 228 МВт с выработкой электроэнергии количеством 570 млн кВт*ч.

Реализация солнечных фотоэлектрических установок определена в объеме 2, 36 МВт с выработкой 3, 77 млн кВт*ч. Установленная мощность гелионагревательных систем определена в объеме 69, 89 Гкал/ч при выработке энергии на 111, 82 тыс. Гкал, что обеспечивает замещение органического топлива в количестве 15, 99 тыс. т у. т.

Выработка электрической энергии на основе биомассы определена в объеме установленной мощности в 152, 02 МВт, а производство тепловой энергии 2753, 74 тысяч Гкал, что обеспечивает суммарное замещение органического топлива в количестве 686, 37 тысяч т у. т.

Планируемая установленная мощность геотермальных станций по выработке электроэнергии составит 68, 3 МВт, а по выработке тепловой энергии 16, 5 тыс. Гкал, что в сумме обеспечит замещение органического топлива в объеме 133, 84 тыс. т у. т.

Сооружение энергетических установок на основе использования низкопотенциальной энергии (преимущественно тепловых насосов) предусматривает освоение 543, 9 Гкал/ч установленной мощности с выработкой 2991, 4 тыс. Гкал и замещением 221, 2 тыс. т у. т.

Предусмотренное строительство комбинированных систем на базе возобновляемой энергетики и локальных энергоресурсов обеспечит ввод электрической мощности в объеме 30, 54 МВт с выработкой электроэнергии количеством 122, 16 млн. кВт*ч и тепловой энергии мощностью 10, 2 Гкал/ч с выработкой 314, 6 тыс. Гкал. Общее замещение органического топлива от комбинированных энергосистем составит 87, 75 тыс. т у. т.

Малая гидроэнергетика.

На территории области протекает более 18 тысяч рек и речек. Имеется более 100 водоёмов с объёмом воды выше 1 млн. м³; большая часть из них имеет регулируемый водосброс.

Гидрологический потенциал характеризуется следующими особенностями:

Наличием рек большими дебитами и малыми перепадами высот по длине русла;

Наличием рек с малыми дебитами и значительными перепадами высот;

Наличием большого количества искусственных водоемов (прудов) с регулируемым водосбросом небольшой высоты (2 - 10 м);

Значительной годовой неравномерностью дебита рек.

Указанные факторы осложняют требуют детального обоснования использования энергии рек. В области действует лишь одна ГЭС - Верхотурская установленной мощностью 7 МВт.

Однако научные разработки последних лет по совершенствованию энергетической техники для мини и микро ГЭС позволяют ставить вопрос о восстановлении заброшенных мини ГЭС области (В-Сысертская, Алапаевская, Афанасьевская, Ирбитская - 180 кВт, Речкаловская - 400 кВт и др.) и сооружении ряда новых мини и микро ГЭС /3,4/.

Возможные пункты строительства новых ГЭС на существующих гидротехнических сооружениях приведены в табл.5.


Таблица 5. Перечень гидротехнических сооружений с ожидаемым уровнем мощности выше 1000 кВт

В целом по области существующие гидротехнические сооружения позволяют использовать потенциал мини ГЭС на уровне ~ 200-250 МВт при величине капитальных вложений 10-15 т. руб/кВт. установленной мощности.

Использование потенциала микро ГЭС для рек, берущих начало вблизи 60-го градуса восточного меридиана (отроги Уральского хребта) может быть оценено на уровне от 10 до 50 МВт.

При КИУМ ГЭС на уровне = 0,30÷0,35, характерном для изменения водостока рек области годовое производство электроэнергии возможно в объёмах 300 - 500 млн. кВт. ч, что эквивалентно экономии 100-160 тыс. т. у. т. /год. На территории области имеются предприятия, осуществляющие выпуск оборудования для ГЭС малой мощность (Уралгидромаш, Уралэлектротяжмаш и др.).

Область характеризуется достаточно неравномерным распределением ветровых потоков по территории /5/. В табл.6 приведены данные по среднегодовым и среднемесячным скоростям ветра для ряда точек на территории.


Таблица 6.

К зонам высоких ветров могут быть отнесены вершины отрогов Уральского хребта (г. Благодать, г. Качканар, г. Магнитная и др.), где среднегодовые скорости ветра находятся на уровне (5,5 - 10) м/с и прилегающие к Свердловской области с севера области Северо-Сосьвинской возвышенности, где среднегодовая скорость ветра оценивается на уровне 6-12 м/с.

При указанных скоростных напорах ветра удельная мощность территорий составляет: от 1 МВт/кв.км (скорость ~ 3-4 м/с) до 4 МВт/кв.км (скорость ~ 8 м/с) КИУМ ВЭУ для гористой части территории области ожидается на уровне 0,4-0,5, что соответствует производству электроэнергии от 4 млн кВт. ч/км². год до 16 млн. кВт. ч/км². год.

Для ВЭС расположенной в заселенной равнинной части области при площади 1 км² (10 установок × 100 кВт) годовая экономия топлива составит от 1400 т. у. т. /год на одну ВЭС.

Для ВЭС расположенных на вершинах гор ~ 4000,0 т. у. т. /год.

При площади области ~ 194 тыс. кв.км и использовании под сооружение ВЭС только 10% горной части территории (~ 0,5%) возможная мощность ВЭС оценивается на уровне 200 МВт, с производством электроэнергии 0,6 - 0,8 млрд. кВт. ч/год при уровне капитальных вложений 20-30 тыс. руб. /кВт.

Указанное производство энергии эквивалентно экономии органического топлива в объёмах 0,2 - 0,3 млн. т. у. т. /год.

Целесообразно рассматривать возможность широкого использования ветронасосов в быту и в сельском хозяйстве.

Существующие технологии получения биогаза из отходов животноводства /6/ для Свердловской области позволяют сделать следующую оценку (табл.7).

Таблица 7

Что соответствует экономии органического топлива: ~ 370 тыс. т. у. т. /год.

Несмотря на кажущуюся незначительность этой экономии целесообразно сооружение биогазовых станций на площадках крупных хозяйств (табл.8).

Таблица 8.

Использование биогаза возможно, как для производства тепловой, так и электрической энергии. В последнем случае используются ДВС с генератором электроэнергии.

Запасы торфа на территории области оцениваются на уровне 7678 млн. тон 40% -влажности, что соответствует ~ 2000 млн. т. у. т.

Наибольшие запасы торфа сосредоточены в следующих районах (табл.9).

Таблица 9.

В Свердловской области добыча и использование торфа практически свернуты. Если в 1987 году его добывалось около 3,600 млн. т/год, то в 1999 добыча снизилась до 0,135 млн. т.

Использование торфа сопряжено с необходимостью совершенствования технологии его добычи, осушки, приготовления брикетов и полубрикетов, совершенствования технологий использования (включая газогенераторную технику).

Реально торфяные предприятия области способны при соответствующих условиях обеспечить замену на торф дров и привозного угля для частных потребителей и мелких котельных, а в перспективе и для ряда ведомственных ТЭЦ и ЭС АО "Свердловэнерго".

Возможные объёмы производства торфа в течение 5 лет могут составить не менее 1,5 млн. т. у. т. /год.

Ежегодные объёмы потребления топлива прямого использования, тепловой и электрической энергии в энергетике, промышленный и коммунально-бытовой сферах области достигают 30-35 млн. т. у. т.

Существующие технологии их использования, приводят к образованию больших количеств низкопотенциальных тепловых сбросов предприятий в окружающую среду через системы оборотного водоснабжения, вентиляции, с теплотой шлаков и золы, сбросных вод электростанций и пр. Энергетический потенциал сбросной теплоты достигает 10-15 млн. т. у. т. /год, т.е. составляет почти половину всего поступающего на территорию топлива.

Имеющийся в мире опыт использования сбросной теплоты при помощи тепловых насосов показывает, что не менее 30% этой энергии может быть возвращено в хозяйственный оборот при капитальных вложениях не более 30 тыс. руб. /кВт (тепл).

Для Свердловской области это соответствует ежегодной экономии 3-5 млн. т. у. т.

Объём производства древесины в Свердловской области составил в 1990 году около 10 млн. м³/год. На всех стадиях заготовки и переработки древесины в виде щепы, стружки, опила и т.п. образуется и практически не используется до 5 млн. м³/год, что эквивалентно около 3 млн. т. у. т. /год.

Использование данного энергетического потенциала возможно лишь при разработке технологий подготовки и использования отходов древесины например путём переработки их в термических газогенераторах или биореакторах.

Возможно прямое ожигание отходов в топках мини и микро ТЭЦ и в котлах с кипящим слоем для ЭС большой мощности.

В настоящее время объёмы лесозаготовки и лесопереработки снизились до ~ 2,50 млн. м³/год из них ~ 1,5 млн. м³/год для целей энергопотребления.

Общий потенциал нетрадиционных и возобновляемых источников энергии и нетрадиционных топлив представлен в табл.10.


Таблица 10.

1. Потенциал НИВИЭ области позволяет снизить потребление органического топлива до 5-8 млн. т. у. т. в год.

2. Анализ показывает, что полное использование потенциала НИВИЭ позволит обеспечить устойчивое энергообеспечение свыше 40% децентрализованных и удалённых потребителей.

3. При поддержке правительства области на территории развернуто производство и подготовка к внедрению установок ветроэнергетики (4, 16, 30 кВт), солнечных коллекторов, газогенераторной техники, оборудования малой гидроэнергетики.

4. Развертывание работ по НИВИЭ затруднено отсутствием правовой базы, стимулирующей их создание и внедрение.

Заключение

В настоящее время возобновляемые источники энергии (энергия рек, ветра, солнца, биомассы, тепла Земли) в энергобалансе России составляют 22%. Ведущую роль занимает большая гидроэнергетика (20%). При рассмотрении стратегии развития энергетики России необходимо учитывать, что, согласно данным Института мировых ресурсов и других международных организаций, запасов жидкого ископаемого топлива в России осталось на 1-2 поколения, угля и урана на 2-4 поколения жителей России.

Сегодня вклад ВИЭ в энергетический баланс России, несмотря на их огромный потенциал, незначителен. Основным препятствием развития этого направления является отсутствие законодательства по стимулированию возобновляемой энергетики и экономических механизмов его реализации, недостаток финансирования и комплексного подхода к решению этой проблемы: наука – производство - широкомасштабное использование.

Несмотря на то, что электроэнергия и тепло, получаемые от различных ВИЭ, сегодня, как правило, дороже, чем от традиционных источников, существует значительный рынок, где использование ВИЭ конкурентоспособно. Это прежде всего относится к регионам, где источником энергии является дорогое привозное топливо, рекреационным зонам, где на первый план выступает экологическая чистота ВИЭ, к ряду случаев, когда имеющиеся сооружения и объекты позволяют существенно снизить капитальные затраты для сооружаемых ВИЭ (пробуренные скважины для геотермального теплоснабжения, гидротехнические сооружения для малых ГЭС, большое количество различных отходов, подлежащих утилизации).

Состояние производственной базы для производства оборудования для различных ВИЭ в стране различно. Значительны успехи в создании крупных геотермальных электростанций на Камчатке. Отечественные предприятия сегодня производят малыми сериями конкурентоспособное оборудование для малых ГЭС, биогазовых установок небольшой мощности, фотопреобразователи, солнечные водонагревательные установки, малые ветроэнергетические установки, тепловые насосы средней мощности. При ограниченном платежеспособном спросе объем этих производств достаточен. Однако по мере экономического роста потребуется расширение производственной базы по выпуску оборудования для ВИЭ.

Отечественные разработки и производство крупных (мегаваттного класса) ветроэнергетических агрегатов существенно отстают от зарубежных фирм.

Список литературы

1. Арбузов Ю.Д., Евдокимов В.М., Зайцев С.В., Муругов В.П., Пузаков В.Н. "Возобновляемая энергия" "Вестник энергосбережения Южного Урала". июнь, 2002.

2. Борисова С., Темнова Е., Трошкова А., Щеклеин С.Е. Возможности гидроэнергетического потенциала Свердловской области для развития малой гидроэнергетики региона. Энерго - и ресурсосбережение. Нетрадиционные и возобновляемые источники энергии. Изд. УГТУ, 2001.

3. Данилов Н.И., Щеклеин С.Е., Велкин В.В., Шестак А.Н., Малетин А.П. Возобновляемая энергетика - альтернативная в электрификации удаленных районов. Эффективная энергетика, Изд. УГТУ, 2001.

4. Пицунова О.Н. Виды нетрадиционных возобновляемых источников энергии и технологии их освоения "Вестник энергосбережения Южного Урала". июнь, 2002

5. Шпильрайн Э.Э. Проблемы и перспективы возобновляемой энергии в России

6. Щеклеин С.Е. Роль нетрадиционных и возобновляемых источников энергии при реформировании электроэнергетического комплекса Свердловской области. "Энергетика региона", Екатеринбург, №2, 2001.

Возобновляемые - это ресурсы, энергия которых непрерывно восстанавливается природой: энергия рек, морей, океанов, солнца, ветра, земных недр и т.п.

Невозобновляемые - это ресурсы, накопленные в природе ранее, в далекие геологические эпохи, и в новых геологических условиях практически не восполняемые (органические топлива: уголь, нефть, газ). К невозобновляемым энергоресурсам относится также ядерное топливо.

Энергетика на ископаемом топливе (тепловые, конденсационные электрические станции, котельные) стала традиционной. Однако оценка запасов органического топлива на планете с учетом технических возможностей их добычи, темпов расходования в связи с ростом энергопотребления показывает ограниченность запасов. Особенно это касается нефти, газа, высококачественного угля, представляющих собой ценное химическое сырье, которое сжигать в качестве топлива нерационально и расточительно. Отрицательное влияние оказывает сжигание больших количеств топлива в традиционных энергетических установках на окружающую среду: загрязнение, изменение газового состава атмосферы, тепловое загрязнение водоемов, повышение радиоактивности в зонах ТЭС, общее изменение теплового баланса планеты.

Практически неисчерпаемы возможности ядерной и термоядерной энергетики, но с нею связаны проблемы теплового загрязнения планеты, хранения радиоактивных отходов, вероятных аварий энергетических гигантов.

В связи с этим во всем мире отмечается повышенный интерес к использованию нетрадиционных возобновляемых источников энергии. Их природа определяется процессами на Солнце, в глубинах Земли, гравитационным взаимодействием Солнца, Земли и Луны. Установки

работающие на возобновляемых источниках, оказывают гораздо меньшее воздействие на окружающую среду, чем традиционные потоки энергии, естественно циркулирующие в окружающем пространстве. Экологическое воздействие энергоустановок на возобновляемых источниках в основном заключается в нарушении ими естественного ландшафта.

В настоящее время возобновляемые энергоресурсы используются незначительно. Их применение крайне заманчиво, многообещающе, но требует больших расходов на развитие соответствующей техники и технологий. При ориентации части энергетики на возобновляемые источники важно правильно оценить их долю, технически и экономически оправданную для применения. Эта задача - оценить, использовать потенциал возобновляемых ресурсов, найти их место в топливно-энергетическом комплексе - стоит перед экономикой Беларуси. Ее решение поможет смягчить дефицитность энергосистемы республики, позволит снизить зависимость от импорта энергоресурсов, будет способствовать стабильности экономики и политической независимости.

При планировании энергетики на возобновляемых источниках важно учесть их особенности по сравнению с традиционными невозобновляемыми. К ним относятся следующие.

1.Периодичность действия в зависимости от неуправляемых человеком природных закономерностей и, как следствие, колебания мощности возобновляемых источников от крайне нерегулярных, как у ветра, до строго регулярных, как у приливов.

2.Низкие, на несколько порядков ниже, чем у возобновляемых источников (паровые котлы, ядерные реакторы), плотности потоков энергии и рассеянность их в пространстве. Поэтому энергоустановки на возобновляемых источниках эффективны при небольшой единичной мощности и прежде всего для сельских районов.

3.Применение возобновляемых ресурсов эффективно лишь при комплексном подходе к ним. Например, отходы животноводства и

растениеводства на агропромышленных предприятиях одновременно могут служит сырьем для производства метана, жидкого и твердого топлива, а также удобрений.

4.Экономическую целесообразность использования того или иного источника возобновляемой энергии следует определять в зависимости от природных условий, географических особенностей конкретного региона, с одной стороны, и в зависимости от потребностей в энергии для промышленного, сельскохозяйственного производства, бытовых нужд, с другой. Рекомендуется планировать энергетику на

возобновляемых источниках для районов размером порядка 250 км. При выборе источников энергии следует иметь в виду их качество.

Последнее оценивается долей энергии источника, которая может быть превращена в механическую работу. Электроэнергия обладает высоким качеством. С помощью электродвигателя более 95% ее можно превратить в механическую работу. Качество тепловой энергии, получаемой в результате сжигания топлива на тепловых электростанциях, довольно низкое - около 30%.

Возобновляемые источники энергии по их качеству условно делят на три группы:

1.Источники механической энергии, обладающие довольно высоким качеством:

¾ ветроустановки - порядка 30%,

¾ гидроустановки - 60%,

¾ волновые и приливные станции - 75%. 2.Источники тепловой энергии:

¾ прямое или рассеянное солнечное излучение,

¾ биотопливо, обладающее качеством не более 35%.

3.Источник энергии, использующие фотосинтез и фотоэлектрические явления, имеют различное качество на разных частотах излучения; в среднем КПД фотопреобразователей составляет порядка 15%.

Основными нетрадиционными и возобновляемыми источниками энергии для Беларуси являются гидро-, ветроэнергетические, солнечная энергия, биомасса, твердые бытовые отходы.

3.1.Солнечная энергетика. Возможность использования солнечной энергии.

Известно два направления использования солнечной энергии. Наиболее реальным является преобразование солнечной энергии в тепловую и использование в нагревательных системах. Второе направление - системы непрямого и прямого преобразования в электрическую энергию.

Прямое преобразование солнечной энергии в тепловую.

Солнечные нагревательные системы могут выполнять ряд функций:

¾ подогрев воздуха, воды для отопления и горячего водоснабжения зданий в районах с холодным климатом;

¾ сушку пшеницы, риса, кофе, других сельскохозяйственных культур, лесоматериалов для предупреждения их поражения насекомыми и плесневыми грибками;

¾ поставлять теплоту, необходимую для работы абсорбционных холодильников;

¾ опреснение воды в солнечных дистилляторах;

¾ приготовление пищи;

¾ привод насосов.

На рис.3.1 представлены три из большого числа конструкций нагревателя воды, отличающихся по эффективности и стоимости.

Рис.3.1. Приемники солнечного излучения

а) - открытый резервуар на поверхности Земли. Тепло уходит в Землю; б) - черный резервуар в контейнере со стеклянной крышкой с изолированным дном;

в) - заполненная водой металлическая плоская емкость. Стандартный промышленный приемник: нагревая жидкость протекает через него и накапливается в специальном резервуаре.

Для отопления зданий зимой могут применяться так называемые пассивные и активные солнечные системы. На рис.3.2а показан пассивный солнечный нагреватель: солнечные лучи попадают на заднюю стенку и пол здания, представляющие собой массивные конструкции с усиленной теплоизоляцией, окрашенные в черный цвет. Недостаток такой системы прямого нагрева - медленный подъем температуры в зимние дни и чрезмерная жара летом - устраняется с помощью накопительной стенки с солнечной стороны (рис.3.2б). Стенка работает как встроенный воздушный нагреватель с тепловой циркуляцией. Летом такую стену может затенять козырек крыши.

Активные солнечные отопительные системы используют внешние нагреватели воздуха и воды. Их можно устанавливать на уже существующие здания.

В системах непрямого преобразования в электрическую - на гелиотермических электростанциях солнечная энергия, аналогично энергии органического топлива на ТЭС, превращается в тепловую энергию рабочего тела, например, пара, а затем в электрическую. Можно создать гелиотермические электростанции мощностью до нескольких десятков - сотен мегаватт. Концентрация солнечной энергии может осуществляться с помощью рассредоточенных коллекторов в форме параболоидов диаметром более 30м.

Рис.3.2 Пассивные солнечные нагреватели:

а - прямой нагрев задней стенки здания: использованы массивные, окрашенные в черный цвет поверхности с усиленной теплоизоляцией для поглощения и накопления солнечной теплоты;

б - здание с накопительной стенкой.

Рис.3.3 Солнечные системы накопления тепловой энергии.

а) солнечная электростанция башенного типа: 1 - солнечный котел; 2 - гелиостат; 3 – паровая

Каждый из них независимо следит за Солнцем и передает его энергию теплоносителю. Альтернативный вариант - солнечные электростанции башенного типа. На них системы плоских зеркал, расположенные на большой площади, отражают солнечные лучи на центральный теплоприемник на вершине башни (рис.3.3).

К сожалению, КПД преобразования солнечной энергии в электрическую на гелиотермических электростанциях составляет не более 10%, а стоимость получаемой электроэнергии несопоставима с ее стоимостью на ТЭС и даже АЭС. Серьезная проблема - непостоянство солнечного излучения в течении суток, его зависимость от времени года. Для обеспечения круглосуточного энергоснабжения требуется аккумулирование энергии. В этой связи рациональна совместная работа гелиотермической и гидроаккумулирующей электростанций.

Заманчиво и многообещающе прямое превращение солнечной энергии в электрическую с помощью солнечных элементов (рис.3.4), в которых используется явление фотоэффекта. В настоящее время наиболее совершенны кремниевые фотоэлементы. Их КПД составляет не более 15%, и они очень дороги. Предложено два варианта реализации принципа фотоэлектрического преобразования. Первый

заключается в создании солнечных станций на искусственных спутниках Земли, оборудованных солнечными панелями из фотоэлементов площадью от 20 до 100 км2 в зависимости от мощности станции. Вырабатываемая на спутниках электроэнергия будет преобразовываться в электромагнитные волны в микроволновом диапазоне частот, направляться на Землю, где принимается приемной антенной. Второй предполагает монтаж сборных панелей солнечных фотоэлектрических элементов в малонаселенных и малоиспользуемых пустынных районах Земли.

Для территории Беларуси свойственны относительно малая интенсивность солнечной радиации и существенное изменение ее в течение суток года. В этой связи необходимо отчуждение значительных участков земли для сбора солнечного излучения, весьма большие материальные и трудовые затраты. Поэтому для нашей республики реально использование солнечной энергии для сушки кормов, семян, фруктов, овощей, подъема и подогрева воды на технологические и бытовые нужды. В результате возможная экономия топливно-энергетических ресурсов оценивается всего в 5000 у.т./год.

Бахматов Дмитрий

класс 10, МОУ СОШ №8 Советского района г. Волгограда

Попова Нина Ивановна

научный руководитель, педагог высшей категории, преподаватель физики, МОУ СОШ № 8 г. Волгограда

Вступление

Нетрадиционными источниками энергии являются солнце, ветер, океанические приливы, тепло земных глубин. Эти варианты получения энергии как дополнительной используются в последнее время всё чаще. Многие учёные убеждены, что к 2030-2050 гг. нетрадиционные (возобновляемые) источники энергии будут основными, а традиционные потеряют своё значение.

Цель статьи: познакомиться с нетрадиционными источниками энергии, их достоинствами и недостатками, а также выяснить для себя перспективы внедрения возобновляемых источников энергии на территории Волгоградской области.

Сегодня подавляющее большинство людей знают о том, что запасы углеводородов не беспредельны, что органическое топливо нужно беречь. Вот почему изучение и использование нетрадиционных источников энергии является актуальным. Многие страны довольно широко используют нетрадиционные источники. Уже несколько лет в Волгоградской области внедряются энергосберегающие установки с использованием энергии ветра, солнца, гидроресурсов, отходов сельского хозяйства, так как этому способствуют географическое положение и климатические условия нашего региона.

Солнечная энергия

Солнечная энергия неисчерпаема. Существует несколько вариантов её использования. При физических способах усвоения солнечной энергии используют гальванические батареи, которые поглощают её и преобразуют в тепловую или электрическую энергию, либо системы зеркал, отражающих лучи солнца и направляющих их на заполненные маслом трубы, которые концентрируют солнечное тепло. Волгоградская область находится на юге нашей страны, значит, в перспективе нехватку энергии без проблем можно компенсировать за счёт солнечной энергии. А вот жителям Крайнего Севера, Сибири, Якутии и т. д. в этом плане сложнее. Я считаю, что в этой местности как раз можно использовать солнечные коллекторы для обеспечения населения электроэнергией, особенно летом. Использование солнечных коллекторов может частично решить экологическую проблему и использовать энергию для бытовых нужд (подогрев воды, обогрев теплиц и т. д.). Наиболее успешно солнечная энергетика развивается в Японии и Израиле, где за её счёт почти полностью покрывается потребность в отоплении жилья и подогреве воды для бытовых нужд. «Совместный алжирско-японский проект SaharaSolarBreederобещает превратить пустыню Сахара в чащу солнечных батарей, способных к 2050 г. обеспечить до половины мировых потребностей в электроэнергии» . В принципе солнечную энергию можно использовать в любом уголке земли.

Одним из наиболее перспективных источников энергии на Земле является биомасса, так как она доступна в неограниченных количествах. Биомасса делится на первичную и вторичную.

Древесину, отходы сельскохозяйственного производства, высушенные водоросли, которые перерабатываются в спирт и т. д., затем используют для получения энергии. Биологическим вариантом использования солнечной энергии является и получение биогаза из навоза, который сбраживается без доступа воздуха. В настоящее время в мире накопилось много мусора, который ухудшает состояние окружающей среды. Мусор губительно влияет на людей, животных, птиц, на всё живое на земле. Такие свалки находятся вблизи моего пос. Горьковский Советского района г. Волгограда: за железнодорожной горкой вдоль Ростовской трассы перед селом Рогачик, в балке с. Песчанка, на ст. Бирюзовая и т. д. Много стихийных свалок образовалось вдоль балок устья реки Царица. Подобных свалок огромное количество во всех как крупных, так и мелких городах и селениях нашей страны. В связи с этим, я думаю, что нужно развивать энергетику с использованием вторичной биомассы, чтобы предотвратить загрязнение окружающей среды. У меня появилась мысль исследовать свалки посёлка, выяснить, сколько мусора вывозится и сколько его нужно, чтобы обеспечить мой посёлок электроэнергией, полученной от сжигания мусора. Мои расчеты показали, что пос. Горьковский сможет себя обеспечить энергией биомассы за счёт своего же мусора. Причём с биомассой практически весь мусор будет сжигаться, и отходов почти нет. Так будет решена проблема уничтожения мусора и обеспечения посёлка электроэнергией при минимальных затратах. Прекрасно можно решить эту проблему и в других городах, что уже решается успешно в западных странах. В ходе исследования мною был проведён небольшой социологический опрос среди населения пос. Горьковский, результаты которого показали, что большинство участников опроса положительно относятся к использованию энергии биомассы.

Преимущества биоэнергии

Это возобновляемая энергия, которая не увеличивает концентрацию углекислого газа в атмосфере, решает проблему использования отходов (мусора), а, значит, помогает улучшить экологию и сделать мир чище.

Солнечную радиацию при помощи гелиоустановок преобразуют в тепловую или электрическую энергию, удобную для практического применения. В южных районах нашей страны созданы десятки солнечных установок и систем.

Достоинства солнечной энергетики

Достоинства солнечной энергетики заключаются в общедоступности и неисчерпаемости источника, в полной безопасности для окружающей среды, это экологически чистый источник энергии, что очень важно именно теперь.

Недостатки солнечной энергетики

Из-за относительно небольшой величины солнечной постоянной для солнечной энергетики требуется использование больших площадей земли под электростанции (например, для электростанции мощностью 1 ГВт это может быть несколько десятков квадратных километров). Поток солнечной энергии на поверхности Земли сильно зависит от широты и климата. В разных местах среднее количество солнечных дней в году может различаться очень сильно. Солнечная электростанция не работает ночью и недостаточно эффективно работает в утренних и вечерних сумерках.

Использование энергии ветра

Человечество научилось использовать энергию ветра на ранней стадии своего развития. Ветряные электростанции производят электроэнергию только тогда, когда дует достаточно сильный ветер. Современный ветряк - сложное устройство. В нём запрограммирована работа в двух режимах - слабого и сильного ветра и остановка двигателя, если ветер станет очень сильным. Недостатком ветряных двигателей являются шумы, которые производят лопасти пропеллера во время вращения. Если ветряк мощный, то шумовое загрязнение делает опасным длительное пребывание людей в зоне работы установки. Наиболее оправданы небольшие ветряки для обеспечения дешевой и экологически безопасной электроэнергией отдельных ферм, дачных участков. К числу передовых стран по использованию энергии ветра относятся: Германия, Дания, Испания, США. В России за последние 5 лет построено несколько ветроэнергетических установок: в Башкирии, в Калининградской области, на Командорских островах, в Мурманске. Перспективно использование ветроустановок в Калмыцких степях, граничащих с Волгоградской областью, так как там ветры дуют, как правило, постоянно и только в одном направлении. В настоящее время там довольно широко используются ветроустановки для обеспечения электроэнергией небольших населённых пунктов Колмыкии. По окраинам Волгограда тоже расположены ветряки местного назначения. Автономные ветроэлектроустановки появились в удалённом от электрических сетей пос. Осипово Калачёвского района, на чабанских точках Волгоградской области. Обсуждается проект первого в России ветропарка мощностью 1 ГВт, который будет построен в Волгоградской области. Общая мощность ветроагрегатов в России превысила 10 МВт.Простейший способ использования энергии ветра впрок состоит в том, что ветряное колесо движет насос, который накапливает воду в расположенный выше резервуар, а потом вода, стекая из него, приводит в действие водяную турбину и генератор постоянного или переменного тока. «Особенно перспективно развитие ветроэнергетики в комплексе с другими возобновляемыми источниками для энергоснабжения изолированных населённых пунктов, удалённых от других энергоисточников» .

Недостатки ветровой энергетики

Прежде всего, ветроустановки неблагоприятно влияют на работу телевизионной сети. Другая особенность ветровых установок проявилась в том, что они оказались источником достаточно интенсивного инфразвукового шума, неблагоприятно действующего на человеческий организм, вызывающего постоянное угнетенное состояние, сильное беспричинное беспокойство и жизненный дискомфорт.

Достоинства ветровой энергетики

Отсутствие влияния на тепловой баланс атмосферы Земли, потребления кислорода, выбросов углекислого газа и т. д. Возможность преобразования в различные виды энергии (механическую, тепловую, электрическую). Непредсказуемые изменения скорости ветра в течение суток и сезона.

Приливные электростанции (ПЭС)

«За счёт использования энергии приливов в России можно покрывать более 25 % текущего энергопотребления страны» .Для выработки электроэнергии электростанции такого типа используют энергию прилива. Первая такая электростанция (Паужетская) мощностью 5 МВт была построена на Камчатке. Для устройства простейшей приливной электростанции нужен бассейн, перекрытый плотиной залив или устье реки. В плотине имеются водопропускные отверстия и установлены гидротурбины, которые вращают генератор. По принципу действия гидравлические турбины подразделяют на: активные и реактивные; по конструкции - на вертикальные и горизонтальные. Мощность гидрогенераторов от нескольких десятков до нескольких сотен МВт. Во время прилива вода поступает в бассейн. Когда уровни воды в бассейне и море сравняются, затворы водопропускных отверстий закрываются. С наступлением отлива уровень воды в море понижается, и когда напор становится достаточным, турбины и соединенные с ним электрогенераторы начинают работать, а вода из бассейна постепенно уходит. В России c 1968 года действует «экспериментальная» ПЭС в Кислой губе на побережье Баренцева моря мощностью 0,4 МВт. Это первая и пока единственная приливная электростанция в России. В 2006 году на станции был установлен опытный образец наплавного блока, на котором расположен оригинальный гидроагрегат ОГА-5 мощностью 1,5 МВт.«Начиная с 1966 года, два французских города полностью удовлетворяют свои потребности в электроэнергии за счёт приливных электростанций» . В Урюпинском районе Волгоградской области для освещения наплавного моста через Хопёр была построена мини-ГЭС волнового типа, работающая на энергии течения воды. Наличие Волги, Дона и малых рек диктует грамотное использование гидроресурсов Волгоградской области.

Недостатки приливных электростанций

Они нарушают нормальный обмен соленой и пресной воды и тем самым - условия жизни морской флоры и фауны. Влияют они и на климат, поскольку меняют энергетический потенциал морских вод, их скорость и территорию перемещения. Морские теплостанции, построенные на перепаде температур морской воды, способствуют выделению большого количества углекислоты, нагреву и снижению давления глубинных вод и остыванию поверхностных. А процессы эти не могут не сказаться на климате, флоре и фауне региона.

Достоинства приливных электростанций

Преимуществами ПЭС является экологичность и низкая себестоимость производства энергии. Не загрязняет атмосферу. Дешёвая и возобновляемая энергия. Сокращает уровень добычи, транспортировки и сжигания органического топлива.

Использование геотермальных источников

В этом случае подразумевается использование тепла земных глубин (глубинных горячих источников). Это тепло можно использовать практически в любом районе, но затраты окупаются только там, где горячие воды приближены к поверхности земной коры. Это районы активной вулканической деятельности и гейзеров, например, Камчатка, Курилы, острова Японского архипелага, Исландия, Новая Зеландия.Источники геотермальной энергии могут быть двух типов. Первый тип - это подземные бассейны естественных теплоносителей - горячей воды (гидротермальные источники), или пара (паротермальные источники), или пароводяной смеси. По существу, это непосредственно готовые к использованию «подземные котлы», откуда воду или пар можно добыть с помощью обычных буровых скважин. Второй тип - это тепло горячих горных пород. Это даёт возможность получить пар или перегретую воду для дальнейшего использования в энергетических целях. Но в обоих вариантах использования главный недостаток заключается в очень слабой концентрации геотермических аномалий, где горячие источники или породы подходят сравнительно близко к поверхности и где при погружении вглубь на каждые 100 м температура повышается на 30-40°С, концентрации геотермальной энергии могут создавать условия и для хозяйственного её использования.

Преимущества геотермальных источников

Во-первых, их запасы практически неисчерпаемы. По оценкам конца 70-х годов до глубины 10 км они составляют такую величину, которая в 3,5 тысячи раз превышает запасы традиционных видов минерального топлива. Считаю, что эта цифра в последнее время изменилась в сторону увеличения. Во-вторых, геотермальная энергия довольно широко распространена. Концентрация её связана в основном с поясами активной сейсмической и вулканической деятельности, которые занимают 1/10 площади Земли. А это не так уж и мало.

Недостатки геотермальных источников

Главная проблема заключается в необходимости обратной закачки отработанной воды в подземный водоносный горизонт. В термальных водах содержится большое количество солей различных токсичных металлов (бора, свинца, цинка, кадмия, мышьяка) и химических соединений (аммиака, фенолов), что исключает сброс этих вод в природные водные системы, расположенные на поверхности, так как эти вещества оказывают губительное действие на всё живое на земле.

Заключение

Я пришёл к выводу, что нетрадиционную энергетику необходимо внедрять в жизнь. В современном обществе трудно найти хотя бы одну область человеческой деятельности, которая не требовала бы использования энергии. Потребление электроэнергии - важный показатель жизненного уровня. Трудно переоценить значение и перспективы использования возобновляемых источников энергии в современном мире. Пока у нас есть солнечный свет, ветер и вода, у нас будет доступ к мощной энергии, заключённой в этих источниках. Чистая энергия солнца, ветра и воды - фундамент энергетики будущего, энергетики, основанной на ничтожно малых выбросах. Необходимо, чтобы государствам стало более выгодно использовать энергию чистых источников. Сейчас начинается новый этап земной энергетики. Появилась энергетика «щадящая», построенная так, чтобы человек не рубил сук, на котором он сидит, а заботился об охране уже сильно поврежденной биосферы. Решение этих проблем требует комплексного подхода на национальном и международном уровне, что позволит ускорить их реализацию. Моё поколение должно быть готово к практическому использованию возобновляемых источников энергии.

Список литературы:

  1. Аркуша М.И. Элективный курс «Энергетика и окружающая среда», 11 класс. - Волгоград: 2010 г.
  2. Калашников Н.П. «Альтернативные источники энергии» М.: Знание 2008 г.
  3. Кондаков А.М. Альтернативные источники энергии - География в школе. 4/88 - М.: Педагогика. 2008 г.
  4. Кононов Ю.Д. Энергетика и экономика. Проблемы перехода к новым источникам энергии. - М.: Наука, 2009 г.
  5. Ревелль П., Ревелль Ч. «Энергетические проблемы человечества» Мир, 2005 г.
  6. Физика № 7 2011 г. Изд.дом Первое сентября
  7. Экология и право (Возобновляемая энергетика) г. СПб. 2008 г.
  8. Энергетические ресурсы мира. Под редакцией Непорожнего П.С., Попкова В.И. - М.: Энергоатомиздат. 2005 г.
  9. Энергия и окружающая среда (учебное пособие для ср. школы) г. СПб. 2008 г.

Нетрадиционные источники энергии

Современный темп роста потребления энергии с учетом рос­та населения невозможно обеспечить без использования новых источников, более эффективных, чем сжигание угля, нефти и газа 7 По данным ЮНЕСКО, примерно 2 млрд жителей Земного шара не имеют доступа к использованию электрической энер­гии в силу проживания в удаленных регионах, где не развита электроэнергетика. Исчерпаемость запасов органического топ­лива, а также сильное загрязнение окружающей среды продук­тами его сгорания уже в ближайшее время могут привести че­ловечество к энергетическому и экологическому кризисам.

Не нарушая экологического состояния окружающей сре­ды и не отказываясь от достижения целей экономического развития, можно обеспечивать значительную часть энерге­тических потребностей за счет использования возобновляе­мых источников энергии

Преимуществами альтернативных (нетрадиционных и во­зобновляемых) источников энергии по отношению к атом­ной энергетике и сжиганию ископаемого органического топ­лива являются их экологическая безопасность, доступность и возможность локального использования. Использование возобновляемых источников энергии является одним из при­оритетных направлений в энергетической политике нашего государства, но их доля в топливном балансе республики пока чрезвычайно мала.

Структура альтернативной энергетики

Потенциал нетрадиционных и возобновляемых источников энергии в Республике Беларусь (млн т у. т. в год)

Солнечная энергетика

Плотность потока солнечного излучения, приходящегося на Землю, составляет примерно 1 кВт/м 2 .

Основными направлениями солнечной энергетики высту­пают фотоэнергетика и гелиоэнергетика. Первая связана с прямым преобразованием потока солнечной энергии в элек­тричество, вторая - с утилизацией тепла при помощи актив­ных и пассивных теплоиспользующих систем.

В 1993 г. суммарная мощность установленных на Земле солнечных батарей достигала 500 МВт, в 1996 г. - 700 МВт, ежегодный прирост составляет около 10 %. Есть основания утверждать, что к 2025 г. солнечная энергетика будет обес­печивать до 10 % всей электрической энергии, производи­мой в мире. Стоимость электроэнергии, получаемой от сол­нечных установок, достаточно быстро снижается.



Солнечные батареи. Энергия солнечной радиации мо­жет быть преобразована в постоянный электрический ток посредством солнечных батарей - устройств, состоящих из тонких пленок кремния или других полупроводниковых ма­териалов. Срок их службы практически не ограничен. Ба­тареи имеют высокую надежность и стабильность, малую массу, отличаются простотой в обслуживании, эффективным использованием как прямой, так и рассеянной солнечной радиации. Модульный тип конструкций позволяет созда­вать установки практически любой мощности и делает их весьма перспективными.

Переход на гетеросоединения типа арсенидов галлия и алюминия, применение концентраторов солнечной радиа­ции с кратностью концентрации 50-100 позволяют повы­сить КПД солнечных батарей до 35 %.

Солнечные эле­менты последовательно соединяются в модули, которые па­раллельно соединяются в батареи.

Башенные и модульные электростанции. Строятся сол­нечные электростанции (СЭС) в основном двух типов: ба­шенного и распределенного (модульного).

В башенных СЭС центральный приемник с полем гелиоста­тов (плоских зеркал) обеспечивает увеличение плотности пото­ка солнечной энергии в несколько тысяч раз. Управление сис­темой слежения за Солнцем осуществляется с помощью ЭВМ.

В 1985 г. в п. Щелкино Крымской области была введе­на в эксплуатацию первая в СССР солнечная электростан­ция СЭС-5 электрической мощностью 5 МВт.

Ее 1 600 гелиостатов, имеющих коэффициент отражения 0,71 и площадь 25,5 м 2 каждый, концентрируют солнечную энер­гию на центральный приемник, представляющий собой от­крытый цилиндр, установленный на башне высотой 89 м и служащий парогенератором.

В соответствии с прогнозом, в будущем СЭС займут 13 млн км 2 на суше и 18 млн км 2 в океане.



Солнечный пруд. СЭС на базе солнечных прудов значительно дешевле СЭС других типов, так как они не требуют зеркальных отражателей со сложной систе­мой ориентации.

В солнечном пруду происходит одновременное улавлива­ние и накапливание солнечной энергии в большом объеме жидкости. Солнечная энергия, проникающая через всю мас­су жидкости в пруду, поглощается окрашенным в темный цвет дном и нагревает прилегающие слои жидкости до тем­пературы 90-100 °С, в то время как температура поверхнос­тного слоя остается на уровне 20 °С.

Солнечные коллекторы и аккумуляторы теплоты. Основным конструктивным элементом солнечной установ­ки является коллектор, в котором происходит улавливание солнечной энергии, ее преобразование в теплоту и нагрев воды, воздуха или какого-либо другого теплоносителя. Раз­личают два типа солнечных коллекторов: плоские и ф о -кусирующие. В плоских коллекторах солнечная энер­гия поглощается без концентрации, а в фокусирующих -с концентрацией, т. е. с увеличением плотности поступаю­щего потока радиации. Наиболее распространенным типом коллекторов в низкотемпературных гелиоустановках явля­ется плоский коллектор солнечной энергии (КСЭ). Его рабо­та основана на принципе "горячего ящика". Максимальная температура нагрева теплоносителя в плоском коллекторе не превышает 100 "С.

Для работы установок, требующих высокой температу­ры, которую невозможно получить с помощью плоских на­гревателей, используют фокусирующий солнечный коллек­тор. Такой коллектор включает в себя приемник, поглоща­ющий излучение и преобразующий его в какой-либо дру­гой вид энергии, и концентратор, который представляет со­бой оптическую систему, собирающую солнечное излуче­ние с большой поверхности и направляющую ее на прием­ник. При этом концентратор вращается, ориентируясь на наиболее интенсивное излучение. Концентрация солнечной энергии позволяет нагреть поверхность теплообмена до 700 °С и более, что достаточно для работы теплового двига­теля с приемлемым КПД. В этом случае коллектор переда­ет энергию теплоносителю, который поступает в генератор электроэнергии.

Система солнечного теплоснабжения зданий. В пассив­ных системах роль солнечного коллектора и аккумулятора теплоты обычно выполняют сами ограждающие конструк­ции здания, а движение теплоносителя (воздуха) осуществ­ляется за счет естественной конвекции без применения вен­тилятора. В 2000 г. в странах Европейского сообщества пас­сивные гелиосистемы позволили сэкономить 50 млн т нефти.

В состав активной системы солнечного отопления вхо­дят: коллектор солнечной энергии, аккумулятор теплоты, дополнительный (резервный) источник энергии, теплообмен­ники для передачи теплоты из КСЭ в аккумулятор и далее к потребителям, насосы или вентиляторы, трубопроводы с ар­матурой и комплекс устройств для автоматического управ­ления работой системы. Солнечный коллектор обычно уста­навливается на крыше дома, остальное оборудование гелио­системы отопления и горячего водоснабжения дома разме­щается в подвале.

Наряду с окнами и остекленными поверхностями южного фасада для улавливания солнечного излучения используются остекленные проемы в крыше и дополнительные окна в верх­ней части здания.

Прямое улавливание солнечной энергии может эффектив­но осуществляться при соблюдении следующих условий:

Оптимальная ориентация дома - вдоль оси восток-за­пад или с отклонением до 30° от этой оси;

На южной стороне расположены 50-70 % всех окон, а на северной - не более 10 %, причем южные окна должны иметь двухслойное остекление, а северные - трехслойное;

Здание должно иметь улучшенную тепловую изоляцию и низкие теплопотери вследствие инфильтрации наружно­го воздуха;

Внутренняя планировка здания должна обеспечивать расположение жилых комнат с южной стороны, а вспомога­тельных помещений - с северной;

Должна быть обеспечена достаточная теплоаккумулиру-ющая способность внутренних стен и пола для поглощения и аккумулирования теплоты солнечной энергии;

Для предотвращения перегрева помещений в летний период над окнами должны быть предусмотрены навесы, козырьки и т. п.

КПД такой системы отопления, как правило, составляет 25-30 %, но в особо благоприятных климатических услови­ях может быть значительно выше и достигать 60 %.

Солнечные водонагревательные установки. Сейчас во всем мире в эксплуатации находится более 5 млн солнеч­ных водонагревательных установок, используемых в инди­видуальных жилых домах, централизованных системах го­рячего водоснабжения жилых и общественных зданий, вклю­чая гостиницы, больницы, спортивно-оздоровительные учреж­дения и т. п. Налажено промышленное производство сол­нечных водонагревателей в Японии, Израиле, США, Австра­лии, Индии, ЮАР, во Франции, на Кипре и других странах.

Солнечные водонагревательные установки получили довольно широкое распространение благодаря простоте их конструкции, надежности, быстрой окупаемости. По принципу работы их можно разделить на два типа: уста­новки с естественной и принудительной циркуляцией теп­лоносителя.

Солнечная водонагревательная установка с естественной циркуляцией содержит коллектор солнечной энергии. В бак аккумулятора подводится холодная вода, и из его верхней части отводится потребителям горячая.

Солнечная водонагревательная установка с принудительной циркуляцией теплоносителя содержит тепловой коллектор сол­нечной энергии и аккумулятор тепловой энергии (бак с тепло­носителем). В аккумуляторе находится теплоприемник, где на­гревается вода. Нагретая вода циркуляционным насосом пода­ется потребителю, а холодная возвращается в аккумулятор.

Ветроэнергетика

Потенциал энергии ветра в мире сравним с потреблением энергии странами ЕС в начале нашего столетия. В развитых странах ветроэнергетика развивается быстрыми темпами. С 1997 по 2002 г. производственные мощности ветроэнергетических установок (ВЭУ) увеличились на 30 %

Мощность установленных ветроэлектростанций в Герма­нии, Америке, Испании, Дании в сумме составляет 82 % от общемировых.

На территории Германия работает около 14 000 турбин. В настоящее время 4,7% всей электроэнергии в стране вырабатывается за счет энергии ветра, к 2010 г. прогнозиру­ется увеличение до 10 % и к 2030 г. - до 25 %.

В США в настоящее время потребляется около 1 % элек­троэнергии, полученной на основе энергии ветра. По прогно­зам специалистов к 2020 г. эта энергия составит 6 % всей вырабатываемой в стране электроэнергии.

В Дании ветер дает не менее 18 % всей энергии. Круп­ный прирост мощностей наметился в Голландии, где в 2005 г. на ветроэнергетику приходилось около 5 % электроэнергии из возобновляемых источников.

Большая часть ветроэнергетических установок использу­ется для производства электроэнергии в единой энергосис­теме и в автономных режимах. Стоимость электроэнергии от ветроустановок стабильно понижается: в 1983 г. стоимость 1 кВт-ч составляла 1220 центов, в 1989 г. - 6-10, в 1996 г. -5-8, в 2005 г. - 4-5 центов. С начала 80-х гг. производство энергии за счет энергии ветра стало на 80 % дешевле и на сегодняшний день уступает в цене лишь природному газу.

По оптимистическим прогнозам, ветроэнергетика способ­на давать миру не менее 7 % потребляемой электроэнергии.

Малые ветряные турбины (от 0,025 до 50 кВт) чаще всего являются самым дешевым источником энергии для отда­ленных населенных пунктов, не подключенных к комму­нальной электросети. Комбинированные системы (ветер -фотоэлементы, ветер - дизель и другие сочетания) часто яв­ляются наиболее эффективными и экономичными для сель­ской электрификации. Для небольших ветроэлектрических турбин среднегодовая скорость ветра должна быть около 4 м/с, а для ветротурбин, приводящих в действие водяные насосы, - еще меньше. Для коммунальных ветроэлектрос-танций минимальная скорость ветра составляет около 6 м/с.

В районах с благоприятными ветровыми условиями среднегодо­вое производство электроэнергии ветроэнергетическими установ­ками составляет до 25-30 % максимального проект­ного значения. Срок службы ВЭУ не менее 15-20 лет, а их стоимость -от 1 000 до 1 500 долларов США за 1 кВт проектной мощности.

Ветроустановки классифициру­ются по основным признакам гео­метрии колеса и его положения относительно ветра.

Если ось вращения ветроколеса расположена параллельно воздуш­ному потоку, установку называют горизонтально-осевой; если перпен­дикулярно - вертикально-осевой.

Основными элементами ветро-генераторов являются ветроуста-новка, электрогенератор, система управления параметрами генериру­емой электроэнергии (регулирует скорость вращения ветроколеса при изменении скорости ветра), аккумуляторы электроэнергии или другие электроэнергети­ческие установки (на период безветрия). Основным рабочим органом ВЭУ, принимающим на себя энергию ветра и преоб­разующим ее в кинетическую энергию своего вращения, яв­ляется ветроколесо. Мощность ВЭУ определяется характе­ристиками ветроколеса. Ветроколесо характеризуется:

Заметаемой площадью S - площадью, покрываемой его лопастями при вращении, S - nD 2 1 А, где D - диаметр колеса;

Геометрическим заполнением, т. е. отношением площа­ди проекции лопастей на плоскость, перпендикулярную по­току, к заметаемой площади;

Коэффициентом мощности, характеризующим эффектив­ность использования потока ветра через заметаемую пло­щадь, (зависит от конструкции ветроколеса);

Коэффициентом быстроходности, определяемым отноше­нием скорости конца лопасти к скорости ветра.

Мощность ветроколеса Р определяется по формуле

P = l/2C p Spo 3 ,

где С - коэффициент мощности; S - заметаемая площадь; р-плотность воздуха; О3 - скорость ветра.